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Kevin	CarlbergBreaking	computa5onal	barriers

High-fidelity simulation  2

computa5onal	barrier

+ Indispensable	across	science	and	engineering	
- High	fidelity:	extreme-scale	nonlinear	dynamical	system	models
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Magnetohydrodynamics	
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High-fidelity simulation: B61 LEP captive carry 3

๏ explore	flight	
envelope

๏ quan2fy	effects	of	
uncertain2es	on	store	load

๏ robust	design	of	
store	and	cavity

computa5onal	barrier

Many-query problems

+Validated	and	predic(ve:	matches	wind-tunnel	experiments	to	within	5%	
- Extreme-scale:	100	million	cells,	200,000	2me	steps	
- High	simula(on	costs:	6	weeks,	5000	cores
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Approach: exploit simulation data  4

Idea:	exploit	simula(on	data	collected	at	a	few	points

D

1. Training:	Solve	ODE	for																							and	collect	simula2on	data	
2. Machine	learning:	Iden2fy	structure	in	data
3. Reduc(on:	Reduce	cost	of	ODE	solve	for

Many-query	problem:	solve	ODE	for	µ 2 Dquery

µ 2 Dtraining

µ 2 Dquery \ Dtraining

ODE:
dx

dt
= f(x; t,µ), x(0,µ) = x0(µ), t 2 [0,Tfinal], µ 2 D
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Model reduction criteria  5

1. Accuracy:	achieves	less	than	1%	error

2. Low	cost:	achieves	at	least	100x	computa2onal	savings

3. Structure	preserva;on:	preserves	important	physical	proper2es

4. Reliability:	guaranteed	sa2sfac2on	of	any	error	tolerance	(fail	safe)

5. Cer;fica;on:	quan2fies	ROM-induced	epistemic	uncertainty
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Model reduction: previous state of the art  6

Linear	5me-invariant	systems:	mature	[Antoulas,	2005]	
‣ Balanced	trunca2on	[Moore,	1981;	Willcox	and	Peraire,	2002;	Rowley,	2005]	
‣ Transfer-func2on	interpola2on	[Bai,	2002;	Freund,	2003;	Gallivan	et	al,	2004;	Baur	et	al.,	2001]	
+ Accurate,	reliable,	cer(fied:	sharp	a	priori	error	bounds	
+ Inexpensive:	pre-assemble	operators	
+ Structure	preserva(on:	guaranteed	stability

Ellip5c/parabolic	PDEs:	mature	[Prud’Homme	et	al.,	2001;	Barrault	et	al.,	2004;	Rozza	et	al.,	2008]	

‣ Reduced-basis	method	
+ Accurate,	reliable,	cer(fied:	sharp	a	priori	error	bounds,	convergence	
+ Inexpensive:	pre-assemble	operators	
+ Structure	preserva(on:	preserve	operator	proper2es
Nonlinear	dynamical	systems:	ineffec2ve	
‣ Proper	orthogonal	decomposi2on	(POD)–Galerkin	[Sirovich,	1987]	
- Inaccurate,	unreliable:	ohen	unstable	
- Not	cer(fied:	error	bounds	grow	exponen2ally	in	2me		
- Expensive:	projec2on	insufficient	for	speedup	
- Structure	not	preserved:	dynamical-system	proper2es	ignored
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Our research  7

Accurate,	low-cost,	structure-preserving,	
reliable,	cer;fied	nonlinear	model	reduc;on

‣ accuracy:	LSPG	projec2on	[Carlberg,	Bou-Mosleh,	Farhat,	2011;	Carlberg,	An2l,	Barone,	2017]	

‣ low	cost:	sample	mesh	[Carlberg,	Farhat,	Cor2al,	Amsallem,	2013]	

‣ low	cost:	reduce	temporal	complexity	
[Carlberg,	Ray,	van	Bloemen	Waanders,	2015;	Carlberg,	Brencher,	Haasdonk,	Barth,	2017;	Choi	and	Carlberg,	2017]	

‣ structure	preserva(on	[Carlberg,	Tuminaro,	Boggs,	2015;	Peng	and	Carlberg,	2017;	Carlberg	and	Choi,	2017]	

‣ reliability:	adap2vity	[Carlberg,	2015]	
‣ cer(fica(on:	machine	learning	error	models	

[Drohmann	and	Carlberg,	2015;	Trehan,	Carlberg,	Durlofsky,	2017;	Freno	and	Carlberg,	2017]



/38

Kevin	CarlbergBreaking	computa5onal	barriers

Our research  8

Accurate,	low-cost,	structure-preserving,	
reliable,	cer;fied	nonlinear	model	reduc;on

‣ accuracy:	LSPG	projec2on	[Carlberg,	Bou-Mosleh,	Farhat,	2011*;	Carlberg,	An2l,	Barone,	2017]	

‣ low	cost:	sample	mesh	[Carlberg,	Farhat,	Cor2al,	Amsallem,	2013]	

‣ low	cost:	reduce	temporal	complexity	
[Carlberg,	Ray,	van	Bloemen	Waanders,	2015;	Carlberg,	Brencher,	Haasdonk,	Barth,	2017;	Choi	and	Carlberg,	2017]	

‣ structure	preserva(on	[Carlberg,	Tuminaro,	Boggs,	2015;	Peng	and	Carlberg,	2017;	Carlberg	and	Choi,	2017]	

‣ reliability:	adap2vity	[Carlberg,	2015]	
‣ cer(fica(on:	machine	learning	error	models	

[Drohmann	and	Carlberg,	2015;	Trehan,	Carlberg,	Durlofsky,	2017;	Freno	and	Carlberg,	2017]

*	#2	most-cited	paper,	Int	J	Numer	Meth	Eng,	2011
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1. Training:	Solve	ODE	for																							and	collect	simula2on	data		
2. Machine	learning:	Iden2fy	structure	in	data	
3. Reduc(on:	Reduce	the	cost	of	solving	ODE	for	

µ 2 Dtraining

Training simulations: state tensor  9

D

dx

dt
= f(x; t,µ)ODE:

µ 2 Dquery \ Dtraining
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Tensor decomposition  10

X ijk =

dx

dt
= f(x; t,µ)ODE:

X(1) = =

Compute	dominant	leK	singular	values	of	mode-1	unfolding

U ⌃ VT

µ 2 Dtraining

µ 2 Dquery \ Dtraining
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1. Training:	Solve	ODE	for																							and	collect	simula2on	data		
2. Machine	learning:	Iden2fy	structure	in	data	
3. Reduc(on:	Reduce	the	cost	of	solving	ODE	for	

Tensor decomposition  10

X ijk =

dx

dt
= f(x; t,µ)ODE:

X(1) = =

Compute	dominant	leK	singular	values	of	mode-1	unfolding

U ⌃ VT�

columns	are	principal	components	of	the	spa(al	simula(on	data�

How	to	integrate	these	data	with	the	computa;onal	model?

µ 2 Dtraining

µ 2 Dquery \ Dtraining
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Previous state of the art: POD–Galerkin

1. Training:	Solve	ODE	for																							and	collect	simula2on	data		
2. Machine	learning:	Iden2fy	structure	in	data	
3. Reduc(on:	Reduce	the	cost	of	solving	ODE	for	

µ 2 Dtraining

µ 2 Dquery \ Dtraining

dx

dt
= f(x; t,µ)ODE:

1. Reduce	the	number	of	unknowns 2. Reduce	the	number	of	equa2ons

D

DGalerkin	ODE:
d x̂

dt
= �

T
f(�x̂; t,µ)

d x̂

dt
) = 0

((�

T (f(�x̂; t,µ)��

x(t) ⇡ x̃(t) = � x̂(t)
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B61 captive carry  12

V1

‣ Unsteady	Navier–Stokes ‣ Re	=	6.3	x	106 ‣ M∞	=	0.6

Spa5al	discre5za5on	
‣ 2nd-order	finite	volume	
‣ DES	turbulence	model	
‣ 																	degrees	of	freedom1.2⇥ 106

Temporal	discre5za5on	
‣ 2nd-order	BDF	
‣ Verified	2me	step		
‣ 																	2me	instances

�t = 1.5⇥ 10�3

8.3⇥ 103
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High-fidelity model solution  13

vor(city	field

pressure	field

Kevin	CarlbergReduced-order	modeling
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Principal components
x(t) ⇡ � x̂(t)

�1

�401

�21

�101
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Galerkin performance  15

probe

Can	we	construct	a	beEer	projec;on?
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- Galerkin	projec(on	fails	regardless	of	basis	dimension
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Galerkin: time-continuous optimality  16

ODE Galerkin	ODE
d x̂

dt
= �

T
f(�x̂; t,µ)d x̂

dt
= �

T
f(�x̂; t,µ)

dx

dt
= f(x; t)

f(�x̂; t)
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Galerkin: time-continuous optimality  16

ODE Galerkin	ODE
d x̂

dt
= �

T
f(�x̂; t,µ)

+ Time-con(nuous	Galerkin	solu(on:	op2mal	in	the	minimum-residual	sense:

d x̂

dt
= �

T
f(�x̂; t,µ)��

- Time-discrete	Galerkin	solu(on:	not	generally	op2mal	in	any	sense

dx

dt
= f(x; t)

f(�x̂; t)

O∆E Galerkin	O∆E

r

n(x) := ↵0x��t�0f(x; t
n) +

kX

j=1

↵jx
n�j ��t

kX

j=1

�j f(x
n�j ; tn�j)

r

n(xn) = 0, n = 1, ... ,Nn = 1, ... ,T �

T
r

n(�x̂

n) = 0, n = 1, ... ,Nn = 1, ... ,T

d�x̂

dt
(x, t) = argmin

v2range(�)
kv � f(x, t)k2

�

d x̂

dt
(x, t)
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Residual minimization and time discretization

ODE
residual	

minimiza(on

(me	
discre(za(on

dx

dt
= f(x; t)

Galerkin	ODE
d x̂

dt
= �

T
f(�x̂; t)

,
 

n(x̂n)T rn(�x̂n) = 0�x̂

n = argmin
v2range(�)

kArn(v)k2

 

n(x̂n) := A

T
A(↵0I��t�0

@f

@x
(�x̂n; t))�

Least-squares	Petrov–Galerkin	(LSPG)	projec(on

residual	
minimiza(on

LSPG	O∆E
�x̂

n = argmin
v2range(�)

kArn(v)k2

[Carlberg,	Bou-Mosleh,	Farhat,	2011]

n = 1, ... ,T

(me	
discre(za(on

O∆E
r

n(xn) = 0
n = 1, ... ,T

Galerkin	O∆E
�

T
r

n(�x̂

n) = 0
n = 1, ... ,T
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Discrete-time error bound  18

Theorem	[Carlberg,	An2l,	Barone,	2017]

If	the	following	condi2ons	hold:	
1.													is	Lipschitz	con2nuous	with	Lipschitz	constant	
2.	The	2me	step								is	small	enough	such	that																																											,	
3.	A	backward	differen2a2on	formula	(BDF)	2me	integrator	is	used,	
4.	LSPG	employs												,	then	

f(·; t) 

0 < h := |↵0|� |�0|�t�t

+ LSPG	sequen(ally	minimizes	the	error	bound

A = I

kxn ��x̂

n
Gk2 

1

h
krnG(�x̂

n
G)k2+

1

h

kX

`=1

|↵`|kxn�` ��x̂

n�`
G k2

kxn ��x̂

n
LSPGk2 

1

h
min
v̂

krnLSPG(�v̂)k2+
1

h

kX

`=1

|↵`|kxn�` ��x̂

n�`
LSPGk2
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LSPG performance  19

probe
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+ LSPG	is	far	more	accurate	than	Galerkin
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Our research  20

Accurate,	low-cost,	structure-preserving,	
reliable,	cer;fied	nonlinear	model	reduc;on

‣ accuracy:	LSPG	projec2on	[Carlberg,	Bou-Mosleh,	Farhat,	2011;	Carlberg,	An2l,	Barone,	2017]	

‣ low	cost:	sample	mesh	[Carlberg,	Farhat,	Cor2al,	Amsallem,	2013*]	

‣ low	cost:	reduce	temporal	complexity	
[Carlberg,	Ray,	van	Bloemen	Waanders,	2015;	Carlberg,	Brencher,	Haasdonk,	Barth,	2017;	Choi	and	Carlberg,	2017]	

‣ structure	preserva(on	[Carlberg,	Tuminaro,	Boggs,	2015;	Peng	and	Carlberg,	2017;	Carlberg	and	Choi,	2017]	

‣ reliability:	adap2vity	[Carlberg,	2015]	
‣ cer(fica(on:	machine	learning	error	models	

[Drohmann	and	Carlberg,	2015;	Trehan,	Carlberg,	Durlofsky,	2017;	Freno	and	Carlberg,	2017]

*	#1	most-cited	paper,	J	Comp	Phys,	2013
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Wall-time problem  21

probe
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‣ High-fidelity	simula(on:	1	hour,	48	cores
‣ Fastest	LSPG	simula(on:	1.3	hours,	48	cores
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Wall-time problem  21
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‣ High-fidelity	simula(on:	1	hour,	48	cores
‣ Fastest	LSPG	simula(on:	1.3	hours,	48	cores

Why	does	this	occur?	
Can	we	fix	it?
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‣ Training:	collect	residual	tensor									while	solving	ODE	for	
‣ Machine	learning:	compute	residual	PCA						and	sampling	matrix
‣ Reduc5on:	compute	regression	approxima2on

Cost reduction by gappy PCA [Everson and Sirovich, 1995]

minimize
v̂

k A rn( � v̂)k2

k2
Can	we	select						to	make	this	less	expensive?A

� v̂)k2

rn ⇡ r̃n = �r(P�r)
+Prn

�r P
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‣ Training:	collect	residual	tensor									while	solving	ODE	for	
‣ Machine	learning:	compute	residual	PCA						and	sampling	matrix
‣ Reduc5on:	compute	regression	approxima2on

Cost reduction by gappy PCA [Everson and Sirovich, 1995]

minimize
v̂

k A rn( � v̂)k2

k2
Can	we	select						to	make	this	less	expensive?A

rn( � v̂)k2 + Only	a	few	elements		
of	d		must	be	computedrn

rn ⇡ r̃n = �r(P�r)
+Prn

�r P
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Sample mesh [Carlberg, Farhat, Cortial, Amsallem, 2013]  23

minimize
v̂

k(P�r)
+Prn(�v̂)k2Prn|{z}

A
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Sample mesh [Carlberg, Farhat, Cortial, Amsallem, 2013]  23

vor(city	field pressure	field

LSPG	ROM	with	

32	min,	2	cores

+229x	savings	in	core–hours	
+<	1%	error	in	(me-averaged	drag

+HPC	on	a	laptop

sample	
mesh

minimize
v̂

k(P�r)
+Prn(�v̂)k2

A = (P�r)
+P

Prn|{z}
A

high-fidelity	
5	hours,	48	cores

‣ implemented	in	three	computa2onal-mechanics	codes
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Ahmed body [Ahmed, Ramm, Faitin, 1984]  24

V1

‣ Unsteady	Navier–Stokes ‣ Re	=	4.3	x	106 ‣ M∞	=	0.175

Spa5al	discre5za5on	
‣ 2nd-order	finite	volume	
‣ DES	turbulence	model	
‣ 																	degrees	of	freedom

Temporal	discre5za5on	
‣ 2nd-order	BDF	
‣ Time	step		
‣ 																	2me	instances

�t = 8⇥ 10�5s

1.7⇥ 107 1.3⇥ 103
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Ahmed body results [Carlberg, Farhat, Cortial, Amsallem, 2013]  25

pressure		
field

+438x	savings	in	core–hours

+HPC	on	a	laptop
sample	
mesh

high-fidelity	model	
13	hours,	512	cores

LSPG	ROM	with A = (P�r)
+P

4	hours,	4	cores

+ Largest	nonlinear	dynamical	system	on	which	ROM	has	ever	had	success
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Our research  26

Accurate,	low-cost,	structure-preserving,	
reliable,	cer;fied	nonlinear	model	reduc;on

‣ accuracy:	LSPG	projec2on	[Carlberg,	Bou-Mosleh,	Farhat,	2011;	Carlberg,	An2l,	Barone,	2017]	

‣ low	cost:	sample	mesh	[Carlberg,	Farhat,	Cor2al,	Amsallem,	2013*]	

‣ low	cost:	reduce	temporal	complexity	
[Carlberg,	Ray,	van	Bloemen	Waanders,	2015;	Carlberg,	Brencher,	Haasdonk,	Barth,	2017;	Choi	and	Carlberg,	2017]	

‣ structure	preserva(on	[Carlberg,	Tuminaro,	Boggs,	2015;	Peng	and	Carlberg,	2017;	Carlberg	and	Choi,	2017]	

‣ reliability:	adap2vity	[Carlberg,	2015]	
‣ cer(fica(on:	machine	learning	error	models	

[Drohmann	and	Carlberg,	2015;	Trehan,	Carlberg,	Durlofsky,	2017;	Freno	and	Carlberg,	2017]
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Temporal complexity  27

r

n(xn) = 0, n = 1, ... ,T

number	of	
2me	steps	T

nu
m
be

r	
of
	

st
at
e	
va
ri
ab
le
s	
N

So	far,	we	have	focused	on	reducing	the	spa(al	complexity

What	about	the	temporal	complexity?
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1. Training:	Solve	ODE	for																							and	collect	simula2on	data		
2. Machine	learning:	Iden2fy	structure	in	data	
3. Reduc(on:	Reduce	the	cost	of	solving	ODE	for	

Tensor decomposition  28

X ijk =

dx

dt
= f(x; t,µ)ODE:

X(1) =

=

Compute	dominant	leK	singular	values	of	mode-1	unfolding

U ⌃ VT�

columns	are	principal	components	of	the	spa;al	simula(on	data�

µ 2 Dtraining

µ 2 Dquery \ Dtraining
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1. Training:	Solve	ODE	for																							and	collect	simula2on	data		
2. Machine	learning:	Iden2fy	structure	in	data	
3. Reduc(on:	Reduce	the	cost	of	solving	ODE	for	

Tensor decomposition  29

X ijk =

dx

dt
= f(x; t,µ)ODE:

=

Compute	dominant	leK	singular	values	of	mode-2	unfolding

U ⌃ VT

µ 2 Dtraining

µ 2 Dquery \ Dtraining

⌅

columns	are	principal	components	of	the	temporal	simula(on	data⌅

X(2) =

How	to	integrate	these	data	with	the	computa;onal	model?
1. Space–2me	LSPG	projec2on	[Choi	and	Carlberg,	2017]	
2. Data-driven	2me	integra2on	[Carlberg,	Ray,	v	B	Waanders,	2015;	Carlberg,	Brencher,	Haasdonk,	Barth,	2017]
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Idea: forecasting via Gappy PCA in time 
[Carlberg, Ray, van Bloemen Waanders, 2015]

 30

xi (t) ⇡ x̃i (t) = ⌅(t)(P⌅(t))+Pxi (t)

Data-driven	ini5al	guess	
[Carlberg,	Ray,	van	Bloemen	Waanders,	2015]	

‣ use	forecast					as	accurate	ini2al	guess	for	the	Newton	solver	
+ 50%	speedup	improvement	observed;	no	accuracy	loss

x̃i

Data-driven	5me-parallel	solver	
[Carlberg,	Brencher,	Haasdonk,	Barth,	2016]	

‣ use	forecast					as	accurate	coarse	propagator	
+ provably	stable;	superlinear	convergence;	ideal	speedups	possible	
+ 10x	speedup	improvements	observed;	no	accuracy	loss

x̃i
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Our research  31

Accurate,	low-cost,	structure-preserving,	
reliable,	cer;fied	nonlinear	model	reduc;on

‣ accuracy:	LSPG	projec2on	[Carlberg,	Bou-Mosleh,	Farhat,	2011;	Carlberg,	An2l,	Barone,	2017]	

‣ low	cost:	sample	mesh	[Carlberg,	Farhat,	Cor2al,	Amsallem,	2013]	

‣ low	cost:	reduce	temporal	complexity	
[Carlberg,	Ray,	van	Bloemen	Waanders,	2015;	Carlberg,	Brencher,	Haasdonk,	Barth,	2017;	Choi	and	Carlberg,	2017]	

‣ structure	preserva(on	[Carlberg,	Tuminaro,	Boggs,	2015*;	Peng	and	Carlberg,	2017;	Carlberg	and	Choi,	2017]	

‣ reliability:	adap2vity	[Carlberg,	2015]	
‣ cer(fica(on:	machine	learning	error	models	

[Drohmann	and	Carlberg,	2015;	Trehan,	Carlberg,	Durlofsky,	2017;	Freno	and	Carlberg,	2017]

*	Featured	Ar2cle,	SIAM	J	Sci	Comp,	2015
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LSPG for finite-volume models  32

⌦j

�j

ODE:
dx

dt
= f(x; t)

‣ minimize	weighted	sum	of	squared	conserva2on	viola2ons	over	2me	step	n	
- Does	not	guarantee	conserva2on	anywhere

LSPG	O∆E: minimize
v̂

kArn(�v̂)k2

‣ average	value	of	conserved	variable	i	over	control	volume	j

‣ flux	and	source	of	conserved	variable	i	within	control	volume	j

fI(i ,j)(x, t) = � 1

|⌦j |

Z

�j

gi (x;~x , t)| {z }
flux

·nj(~x) d~s(~x) +
1

|⌦j |

Z

⌦j

si (x;~x , t)| {z }
source

d~x

xI(i ,j)(t) =
1

|⌦j |

Z

⌦j

ui (~x , t) d~x

‣ conserva5on	viola5on	of	variable	i	in	control	volume	j	over	2me	step	n

O∆E: r

n(xn) = 0, n = 1, ... ,N

r

n
I(i ,j) = xI(i ,j)(t

n+1)� xI(i ,j)(t
n)�

Z tn+1

tn
fI(i ,j)(x, t)dt
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 33

⌦j

�j

‣ minimize	weighted	sum	of	squared	conserva2on-law	viola2ons	over	2me	step	n

LSPG: minimize
v̂

kArn(�v̂)k2

Enforce global conservation [Carlberg, Choi, Sargsyan, 2017]
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 33

⌦j

�j

‣ minimize	weighted	sum	of	squared	conserva2on-law	viola2ons	over	2me	step	n

minimize

v̂
kArn(�ˆv)k2

subject to

¯rn(�ˆv) = 0

�j

⌦

	 subject	to	global	conserva2on

LSPG: minimize
v̂

kArn(�v̂)k2LSPG-FV:

LSPG LSPG-FV
A=I 0.57 0.44

A=(ΦRP)+P 4.4 5.3
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LSPG,	A=(ΦRP)+P

LSPG-FV,	A=(ΦRP)+P

3020100

+	structure	preserva2on			
improves	accuracy

+	sample	mesh	
improves	wall	2me

Example:	quasi-1D	Euler

Enforce global conservation [Carlberg, Choi, Sargsyan, 2017]

speedup

f̄i (x, t) = � 1

|⌦|

Z

�
gi (x;~x , t) · nj(~x) d~s(~x) +

1

|⌦|

Z

⌦
si (x;~x , t) d~x

x̄i (t) =
1

|⌦|

Z

⌦
ui (~x , t) d~x
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Structure preservation  34

2me

 Nonlinear	Lagrangian	dynamical	systems	
[Carlberg,	Tuminaro,	Boggs,	2015]	
‣ approximates	Lagrangian	ingredients,	
then	derives	equa2ons	of	mo2on	

+ ensures	symplec2c	2me	evolu2on	
+ conserves	total	energy

ti
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high-fidelity model 
Galerkin projection 
structure-preserving projections

2

0

�2

 Preserving	marginal	stability	(LTI	systems)	
[Peng	and	Carlberg,	2017]	
‣ applies	symplec2c	projec2on	to	ensure	
ROM	has	purely	imaginary	poles	

+ guarantees	finite	infinite-2me	energy	
+ enables	extension	of	balanced	trunca2on

101

100

10�1

10�2

10�3

Table 5.2
2D mass–spring example. Comparison of di↵erent model-reduction methods for reduced dimension k = 40.

POD SRSB BPOD SP1 SP2
Full-order
model

Number of
unstable modes

8 16 18 0 0 0

Instability margin
max(Re(�))

50.480 10.586 3.695 0 0 0

Marginal-stability
preservation

No No No Yes Yes Yes

Relative state-space
error ⌘

+1 +1 +1 0.11156 0.10214 0.04358

Relative system-energy
error ⌘E

+1 +1 +1 8.6868⇥ 10�5 4.8843⇥ 10�3 3.413⇥ 10�5

Infinite-time
energy

+1 +1 +1 1.9958⇥ 10�3 1.9959⇥ 10�3 1.9959⇥ 10�3
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(a) The evolution of the state-space error ke(t)k = kx(t)�
x̂(t)k
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(b) The evolution of the system energy E(t)

Figure 5.3. 2D mass–spring example. The evolution of the state-space error ke(t)k = kx(t) � x̂(t)k and system energy
E(t) for all tested methods and reduced dimension k = 40.

by G�1 to represent them in canonical coordinates.
Table 5.2 compares the performance of di↵erent reduced-order models (all of dimension k = 40, while

Figure 5.3 plots the `2-norm of the state-space error e(t):=x(t)�x̂(t) and the system energy E(x(t)) for those
reduced-order models as a function of time. Here, the system energy is defined by the total Hamiltonian,
i.e., E(t) = Hx( x(t)) +Hy( y(t)), and its infinite-time value is computed by eigenvalue analysis.

First, note that among all the tested methods, only the full-order model and the proposed SP reduced-
order models preserve marginal stability and have finite errors ⌘ and ⌘E . Further, the SP methods ensure
that the reduced-order model has a pure marginally stable subsystem, and thus a finite infinite-time energy
that is nearly identical to that of the full-order model. Because POD, SRSB, and BPOD have unstable
modes, they yield unbounded infinite-time energy. Further, due to their relatively large instability margins,
their errors and energy grow rapidly within the considered time interval, leading to significant errors.

Finally, we vary the reduced dimension between k = 4 to k = 40 to assess the e↵ect of subspace dimension
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Our research  35

Accurate,	low-cost,	structure-preserving,	
reliable,	cer;fied	nonlinear	model	reduc;on

‣ accuracy:	LSPG	projec2on	[Carlberg,	Bou-Mosleh,	Farhat,	2011;	Carlberg,	An2l,	Barone,	2017]	

‣ low	cost:	sample	mesh	[Carlberg,	Farhat,	Cor2al,	Amsallem,	2013]	

‣ low	cost:	reduce	temporal	complexity	
[Carlberg,	Ray,	van	Bloemen	Waanders,	2015;	Carlberg,	Brencher,	Haasdonk,	Barth,	2017;	Choi	and	Carlberg,	2017]	

‣ structure	preserva(on	[Carlberg,	Tuminaro,	Boggs,	2015;	Peng	and	Carlberg,	2017;	Carlberg	and	Choi,	2017]	

‣ reliability:	adap2vity	[Carlberg,	2015]	
‣ cer(fica(on:	machine	learning	error	models	

[Drohmann	and	Carlberg,	2015;	Trehan,	Carlberg,	Durlofsky,	2017;	Freno	and	Carlberg,	2017]
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Model reduction can work well…  36

vor(city	field pressure	field

LSPG	ROM	with	

32	min,	2	cores

+229x	savings	in	core–hours	
+<	1%	error	in	(me-averaged	drag

A = (P�r)
+P

high-fidelity	
5	hours,	48	cores

…	however,	this	is	not	guaranteed

x(t) ⇡ x̃(t) = �x̂(t)x(t) ⇡ x̃(t) = �

Accuracy	limited	by	informa;on	inx(t) ⇡ x̃(t) = �
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Illustration: inviscid 1D Burgers’ equation  37
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error	
tolerance

Key insight  38

wall	(me

error

Idea:	the	data	provide	an	ini(al,	low-dim	subspace	that		
can	be	refined	to	sa(sfy	any	error	tolerance

x

n = argmin
v2S

kArn(v)k22

1. Generaliza2on	of	mesh-adap2ve	h-refinement	[Carlberg,	2015]
S = range(�h-refine) � range(�)

S = range(�) +K(A, b)

2. Augmented	Krylov	method	[Carlberg,	Forstall,	Tuminaro,	2016]

reduced-order	model

x(t) ⇡ x̃(t) = �

x

n =

S = range(�) ⇢ RN

x̂

n

high-fidelity	model

x

n = I x̂

n

S = range(I) = RN
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Main idea [Carlberg, 2015]  39

Model-reduc;on	analogue	to	mesh-adap;ve	h-refinement

Ingredient 3: Error indicators

1 Adaptive algorithm

2 Refinement

finite element h-refinement ROM h-refinement

3 Error indicators: a) dual solve (coarse), b) prolongation (fine)

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement

Nonlinear model reduction Kevin Carlberg 54
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Nonlinear model reduction Kevin Carlberg 54

finite-element	
h-refinement reduced-order-model	

h-refinement

‣ ‘Split’	basis	vectors

‣ Generate	hierarchical	subspaces
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range range (( ( (✓

‣ Converges	to	the	high-fidelity	model

Main idea
ROM analog to mesh-adaptive h-refinement

‘Split’ basis vectors

finite element h-refinement ROM h-refinement
Generate hierarchical subspaces

ROM converges to the FOM

Nonlinear model reduction Kevin Carlberg 44
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Tree encodes splitting  40
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Tree requirements  41

Tree-construc5on	algorithm	
‣ Iden2fies	hierarchy	of	correlated	states	via	k-means	clustering	
+ Ensures	theorem	condi2ons	are	sa2sfied

Theorem	[Carlberg,	2015]

h-adap2vity	generates	a	hierarchy	of	subspaces	if:	
1.	children	have	disjoint	support,	and	
2.	the	union	of	the	children	elements	is	equal	to	
	the	parent	elements
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Theorem	[Carlberg,	2015]

h-adapDvity	converges	to	the	high-fidelity	model	if	
1. every	element	has	a	nonzero	entry	in	>1	basis	vector,	
2. the	root	node	includes	all	elements,	and	
3. each	element	has	a	leaf	node.

Theorem	[Carlberg,	2015]
h-adapDvity	generates	a	hierarchy	of	subspaces	if	
1. children	have	disjoint	support,	and																		
2. the	union	of	children	elements	is	equal	to														
the	parent	elements

Ingredient 3: Error indicators

1 Adaptive algorithm

2 Refinement

finite element h-refinement ROM h-refinement

3 Error indicators: a) dual solve (coarse), b) prolongation (fine)

dual solve prolongation dual solve prolongation
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	Tree-construc5on	algorithm	
‣ IdenDfies	hierarchy	of	correlated	states	via	recursive	k-means	clustering	
+Ensures	theorem	condiDons	are	saDsfied

Theorem	[Carlberg,	2015]

h-adap2vity	converges	to	the	high-fidelity	model	if:	
1.	every	element	has	a	nonzero	entry	in	>1	basis	vector,	
2.	the	root	node	includes	all	elements,	and	
3.	each	element	has	a	leaf	node.
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	Tree-construc5on	algorithm	
‣ IdenDfies	hierarchy	of	correlated	states	via	recursive	k-means	clustering	
+Ensures	theorem	condiDons	are	saDsfiedWhich	vectors	to	split?	
‣ Dual-weighted-residual	error	es2ma2on	
‣
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Reduced-order	models	
-minimum	error	7.5%	
- cannot	overcome	insufficient	training	data

h-adap;ve	ROMs	
+minimum	error	<0.01%	with	lower	subspace	dimension	
+ can	overcome	insufficient	training	data	without	collec(ng	more	data	
+ can	sa(sfy	any	prescribed	error	tolerance

subspace	dimension
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(
ve
	e
rr
or

reduced-order	models	
h-adap2ve	ROMs

h-adaptivity provides an accurate, low-dim subspace
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Our research  45

Accurate,	low-cost,	structure-preserving,	
reliable,	cer;fied	nonlinear	model	reduc;on

‣ accuracy:	LSPG	projec2on	[Carlberg,	Bou-Mosleh,	Farhat,	2011;	Carlberg,	An2l,	Barone,	2017]	

‣ low	cost:	sample	mesh	[Carlberg,	Farhat,	Cor2al,	Amsallem,	2013]	

‣ low	cost:	reduce	temporal	complexity	
[Carlberg,	Ray,	van	Bloemen	Waanders,	2015;	Carlberg,	Brencher,	Haasdonk,	Barth,	2017;	Choi	and	Carlberg,	2017]	

‣ structure	preserva(on	[Carlberg,	Tuminaro,	Boggs,	2015;	Peng	and	Carlberg,	2017;	Carlberg	and	Choi,	2017]	

‣ reliability:	adap2vity	[Carlberg,	2015]	
‣ cer(fica(on:	machine	learning	error	models	

[Drohmann	and	Carlberg,	2015*;	Trehan,	Carlberg,	Durlofsky,	2017;	Freno	and	Carlberg,	2018]

*	Top	5	most	cited	papers,	SIAM/ASA	JUQ,	2015
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Discrete-time error bound  46

Theorem	[Carlberg,	An2l,	Barone,	2017]

If	the	following	condi2ons	hold:	
1.													is	Lipschitz	con2nuous	with	Lipschitz	constant	
2.	The	2me	step								is	small	enough	such	that																																											,	
3.	A	backward	differen2a2on	formula	(BDF)	2me	integrator	is	used,	
4.	LSPG	employs												,	then	

f(·; t) 

0 < h := |↵0|� |�0|�t�t

A = I

Can	we	use	these	error	bounds	for	error	es;ma;on?

kxn ��

ˆ

x

n
Gk2 

�1(�2)n exp(�3tn)

�4 + �5�t
max

j2{1,...,N}
krjG(�ˆ

x

j
G)k2

kxn ��

ˆ

x

n
LSPGk2 

�1(�2)n exp(�3tn)

�4 + �5�t
max

j2{1,...,N}
min

v̂

krjLSPG(�ˆ

v)k2

- grow	exponen2ally	in	2me

- determinis2c:	not	amenable	to	uncertainty	quan2fica2on
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Idea:	regression	model	that	predicts	error																									from	features ⇢nqnHFM � qnROM

Reduced-order	models	generate	features						that	may	inform	its	error⇢n

outputsinputs µ high-fidelity	model

outputsinputs µ reduced-order	model qnROM, n = 1, ... ,Nn = 1, ... ,T

qnHFM, n = 1, ... ,Nn = 1, ... ,T

features ⇢n, n = 1, ... ,Nn = 1, ... ,T

pr
es
su
re
	a
t	
pr
ob

e

1.6

2.0

2.4

2.8

2me
0 2 4 6 8 10 12

qnROM, n = 1, ... ,N

qnHFM, n = 1, ... ,N
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Training and machine learning: error modeling
1. Training:	Solve	high-fidelity	and	reduced-order	models	for																							µ 2 Dtraining

qnHFM � qnROM ⇢n

qROM

qHFM

features
regression	
model

error	predic(on⇢n �̂n ⇡ qnHFM � qnROM

2. Machine	learning:	Construct	regression	model
3. Reduc(on:	predict	reduced-order-model	error	for µ 2 Dquery \ Dtraining

‣ Regression	methods:	Gaussian	process,	random	forest,	SVM,	neural	nets

D
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Regression model for the error  49

outputsinputs µ reduced-order	model

features ⇢n, n = 1, ... ,N

1. Training:	Solve	high-fidelity	and	reduced-order	models	for																							
2. Machine	learning:	Construct	regression	model
3. Reduc(on:	predict	reduced-order-model	error	for

µ 2 Dtraining

µ 2 Dquery \ Dtraining

D

qnHFM ⇡ qnROM + �̂n

+ Sta(s(cal	model	of	high-fidelity-model	output

Physics-based	feature	engineering	to	determine ⇢n

qnROM, n = 1, ... ,Nn = 1, ... ,T

regression	model sta(s(cal	error	predic(on
�̂n ⇡ qnHFM � qnROM, n = 1, ... ,Nn = 1, ... ,T
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Application 1: Poisson equation [Drohmann, Carlberg, 2015]Error: energy norm of state-space error
Error indicator: residual norm
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Figure 4. Visualization of ROMES surrogates (� = |||�u||| and ��u�X , � = log r, d = log), computed using
N = 100 training points and the (i) GP kernel method and (ii) RVM.

We now assess the validity of the Gaussian-process assumptions underlying the ROMES

surrogates �|||�u||| and ��s, i.e., condition 3 of section 3.1. From the discussion in Remark 4.1,
we know if the underlying GP model form is correct, then as the number of training points
increases, the uncertainty about the mean decreases and the set {D(µ) | µ 2 Pvalidation} with

(5.7) D(µ) := d (|||�u(µ)|||) � E
�
d

�
�|||�u|||(⇢(µ))

��
= d (|||�u(µ)|||) � � (⇢(µ))

should behave like samples from the distribution N (0,�2). Figure 5 reports this validation
test and verifies that this condition does indeed hold for a su�ciently large number of training
points.

Further, we can validate the inferred confidence intervals as proposed in (3.1). The table
within Figure 5 reports �validation (�) (see (3.2)), which represents the frequency of observed
predictions in the validation set that lie within the inferred confidence interval C�. We declare
the ROMES model to be validated, as �validation (�) ⇡ � for several values of � as the number
of training points increases.

The results for the ROMES surrogate ��s are very similar to those presented in Figure 5
and will be further discussed in section 5.3. Note that the inferred Gaussian process is well
converged with a moderately sized training set consisting of only N = 35 points.

5.3. Output error: Comparison with multifidelity correction. As discussed in section

3.2, multifidelity-correction methods construct a surrogate ��s,MF of the output error using
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Figure 10. Validation of the probabilistically rigorous ROMES surrogates �|||�u|||
c

(GP kernel, � = |||�u|||,
� = log r, d = log) and comparison with RB error upper bound �µ

u and uniform distribution based on reduced-

basis error bounds ��uni. The top plots compare statistics of the e�ectivities �(c, µ) with c = 0.5 and c = 0.9 of
the probabilistically rigorous ROMES surrogates with the RB error-bound surrogates. The bottom plots compare
the frequency of error overestimation cvalidation with the desired value c (red line).

As the probabilistically rigorous ROMES surrogates �|||�u|||
c

are stochastic processes, we
can measure their (most common) e�ectivity as

(5.9) �(c,µ) :=
mode

�
�|||�u|||

c
(⇢(µ))

�

|||�u(µ)||| .

The top plots of Figure 10 report the mean, median, standard deviation, and extrema
of the e�ectivities �(0.5,µ) and �(0.9,µ) for all validation points µ 2 Pvalidation. Again, we

compare with ��uni, which is a uniform distribution on an interval whose endpoints correspond
to the lower and upper bounds for the error |||�u(µ)|||. We also compare with the corresponding
statistics for the e�ectivity of the RB error bound �µ

u. The lower bound for the coercivity
constant that is needed in the RB error bound �µ

u is chosen as the minimum over all parameter
components ↵LB(µ) = mini2{1,...,9} µi. This simple choice is e�ective because the example is
a�nely parameter dependent and linear [29, Chap. 4.2].

We observe that the ROMES surrogate yields better results than both the error bound �µ
u

(which produces e�ectivities roughly between one and eight) and the uniform distribution ��uni

(which produces mode e�ectivities roughly between one and four). The 50%-rigorous ROMES
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Figure 5. Gaussian-process validation for the ROMES surrogate (GP kernel, � = |||�u|||, � = log r, d = log)
with a varying number of training points N . The histogram corresponds to samples of D(µ), and the red curve
depicts the probability distribution function N (0, �2). The table reports how often the actual error lies in the
inferred confidence intervals.

the system inputs as error-surrogate inputs, i.e., � = �s, ⇢ = µ, and d = idR. In this
section, we construct this multifidelity-correction surrogate using the same GP kernel method
as ROMES. In [27] it is demonstrated that this error surrogate fails to improve the “corrected
output” when the low-fidelity model corresponds to an ROM. We now verify this result and
show that—in contrast to the multifidelity-correction approach—the ROMES surrogate ��s

constructed via the GP kernel method with � = �s, ⇢ = log r, and d = log yields impressive
results: on average, the output “corrected” by the ROMES surrogate reduces the error by an
order of magnitude, and the Gaussian-process assumptions can be validated. The validation
quality improves as the number of training points increases, but a moderately sized set of only
N = 20 training points leads to a converged surrogate.

The reason multifidelity correction fails for most ROMs is twofold. First, the mapping
µ �� �s can be highly oscillatory in the input space. This behavior arises from the fact that the
reduced-order-model error is zero at the (greedily chosen) ROM training points but grows (and
can grow quickly) away from these points. Such complex behavior requires a large number
of error-surrogate training points to accurately capture. In addition, the number of system
inputs is often large (in this case nine); this introduces curse-of-dimensionality di�culties
in modeling the error. Figure 6(ii) visualizes this problem. The depicted mapping between
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‣ error:	norm	of	state	error		
‣ 1	feature					:	residual	norm	
‣ regression:	Gaussian	process

kx��x̂k
⇢ kr(�x̂)k2

+ low-variance	model	of	the	error		
+ numerically	validated	on	test	set		
- error	bound	overproduc2on	as	high	as	8.0

devia2on	from	GP	mean

Error: energy norm of state-space error
Error indicator: residual norm
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Figure 4. Visualization of ROMES surrogates (� = |||�u||| and ��u�X , � = log r, d = log), computed using
N = 100 training points and the (i) GP kernel method and (ii) RVM.

We now assess the validity of the Gaussian-process assumptions underlying the ROMES

surrogates �|||�u||| and ��s, i.e., condition 3 of section 3.1. From the discussion in Remark 4.1,
we know if the underlying GP model form is correct, then as the number of training points
increases, the uncertainty about the mean decreases and the set {D(µ) | µ 2 Pvalidation} with

(5.7) D(µ) := d (|||�u(µ)|||) � E
�
d

�
�|||�u|||(⇢(µ))

��
= d (|||�u(µ)|||) � � (⇢(µ))

should behave like samples from the distribution N (0,�2). Figure 5 reports this validation
test and verifies that this condition does indeed hold for a su�ciently large number of training
points.

Further, we can validate the inferred confidence intervals as proposed in (3.1). The table
within Figure 5 reports �validation (�) (see (3.2)), which represents the frequency of observed
predictions in the validation set that lie within the inferred confidence interval C�. We declare
the ROMES model to be validated, as �validation (�) ⇡ � for several values of � as the number
of training points increases.

The results for the ROMES surrogate ��s are very similar to those presented in Figure 5
and will be further discussed in section 5.3. Note that the inferred Gaussian process is well
converged with a moderately sized training set consisting of only N = 35 points.

5.3. Output error: Comparison with multifidelity correction. As discussed in section

3.2, multifidelity-correction methods construct a surrogate ��s,MF of the output error using
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Figure 10. Validation of the probabilistically rigorous ROMES surrogates �|||�u|||
c

(GP kernel, � = |||�u|||,
� = log r, d = log) and comparison with RB error upper bound �µ

u and uniform distribution based on reduced-

basis error bounds ��uni. The top plots compare statistics of the e�ectivities �(c, µ) with c = 0.5 and c = 0.9 of
the probabilistically rigorous ROMES surrogates with the RB error-bound surrogates. The bottom plots compare
the frequency of error overestimation cvalidation with the desired value c (red line).

As the probabilistically rigorous ROMES surrogates �|||�u|||
c

are stochastic processes, we
can measure their (most common) e�ectivity as

(5.9) �(c,µ) :=
mode

�
�|||�u|||

c
(⇢(µ))

�

|||�u(µ)||| .

The top plots of Figure 10 report the mean, median, standard deviation, and extrema
of the e�ectivities �(0.5,µ) and �(0.9,µ) for all validation points µ 2 Pvalidation. Again, we

compare with ��uni, which is a uniform distribution on an interval whose endpoints correspond
to the lower and upper bounds for the error |||�u(µ)|||. We also compare with the corresponding
statistics for the e�ectivity of the RB error bound �µ

u. The lower bound for the coercivity
constant that is needed in the RB error bound �µ

u is chosen as the minimum over all parameter
components ↵LB(µ) = mini2{1,...,9} µi. This simple choice is e�ective because the example is
a�nely parameter dependent and linear [29, Chap. 4.2].

We observe that the ROMES surrogate yields better results than both the error bound �µ
u

(which produces e�ectivities roughly between one and eight) and the uniform distribution ��uni

(which produces mode e�ectivities roughly between one and four). The 50%-rigorous ROMES
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Figure 5. Gaussian-process validation for the ROMES surrogate (GP kernel, � = |||�u|||, � = log r, d = log)
with a varying number of training points N . The histogram corresponds to samples of D(µ), and the red curve
depicts the probability distribution function N (0, �2). The table reports how often the actual error lies in the
inferred confidence intervals.

the system inputs as error-surrogate inputs, i.e., � = �s, ⇢ = µ, and d = idR. In this
section, we construct this multifidelity-correction surrogate using the same GP kernel method
as ROMES. In [27] it is demonstrated that this error surrogate fails to improve the “corrected
output” when the low-fidelity model corresponds to an ROM. We now verify this result and
show that—in contrast to the multifidelity-correction approach—the ROMES surrogate ��s

constructed via the GP kernel method with � = �s, ⇢ = log r, and d = log yields impressive
results: on average, the output “corrected” by the ROMES surrogate reduces the error by an
order of magnitude, and the Gaussian-process assumptions can be validated. The validation
quality improves as the number of training points increases, but a moderately sized set of only
N = 20 training points leads to a converged surrogate.

The reason multifidelity correction fails for most ROMs is twofold. First, the mapping
µ �� �s can be highly oscillatory in the input space. This behavior arises from the fact that the
reduced-order-model error is zero at the (greedily chosen) ROM training points but grows (and
can grow quickly) away from these points. Such complex behavior requires a large number
of error-surrogate training points to accurately capture. In addition, the number of system
inputs is often large (in this case nine); this introduces curse-of-dimensionality di�culties
in modeling the error. Figure 6(ii) visualizes this problem. The depicted mapping between
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Example 2: ML and GP, stationary problem [Freno and C, 2017]
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Figure 24: PCAP: Mesh with boundary conditions and nodes of interest: red denotes pressure (Neumann boundary
condition), blue denotes blue denotes planar constraint (Dirichlet boundary condition), orange denotes nodes of
interest
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Figure 25: PCAP: Largest simulated deformation (right) compared to undeformed state (left)
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Predictive Capability Assessment Project (PCAP)

Mechanical response

2.8 ⇥ 105 degrees of freedom

Inputs: µ 2 [50 GPa, 100 GPa] ⇥ [0.2, 0.35] define tube
elastic modulus and Poisson ratio

QoI: displacement of node of interest (orange)

ROM: POD–Galerkin with |DROM| = 8

ROMES: 150 data points (|DROMES| = 30 and five ROM
basis dimensions)

Reducing nonlinear dynamical systems Kevin Carlberg 34

‣ high-fidelity	model	dimension:	
‣ reduced-order	model	dimension:	
‣ inputs				:	elas2c	modulus,	Poisson	ra2o	
‣ error:	error	in	y-displacement	at	point	
‣ 50	features					:	residual	approx																						,		inputs	
‣ regression:	random	forest,	SVM,	k-NN

⇢

µ

+ ML	methods	yield	low-variance	error	predic(ons

er
ro
r

support	vector	machine	
error	predic2on

k-NN	
error	predic2on

random	forest	
error	predic2on

µ

2.8⇥ 105

6

rn ⇡ r̃n = �r(P�r)
+Prn

Application 2: nonlinear static mechanical response 
[Freno, Carlberg,  2017]

R2 = 0.951R2 = 0.990R2 = 0.965

‣ Other	applica(on:	nonlinear	oil–water	flow	[Trehan,	Carlberg,	Durlofsky,	2017]
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Summary  52

Accurate,	low-cost,	structure-preserving,	
reliable,	cer;fied	nonlinear	model	reduc;on

‣ accuracy:	LSPG	projec2on	[Carlberg,	Bou-Mosleh,	Farhat,	2011;	Carlberg,	An2l,	Barone,	2017]	

‣ low	cost:	sample	mesh	[Carlberg,	Farhat,	Cor2al,	Amsallem,	2013]	

‣ low	cost:	reduce	temporal	complexity	
[Carlberg,	Ray,	van	Bloemen	Waanders,	2015;	Carlberg,	Brencher,	Haasdonk,	Barth,	2017;	Choi	and	Carlberg,	2017]	

‣ structure	preserva(on	[Carlberg,	Tuminaro,	Boggs,	2015;	Peng	and	Carlberg,	2017;	Carlberg	and	Choi,	2017]	

‣ reliability:	adap2vity	[Carlberg,	2015]	
‣ cer(fica(on:	machine	learning	error	models	

[Drohmann	and	Carlberg,	2015;	Trehan,	Carlberg,	Durlofsky,	2017;	Freno	and	Carlberg,	2017]
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Moving forward  53

Make	extreme-scale	simula(ons	pervasive	for	many-query	problems

1. Maximize	impact	for	current	methods	
‣ implement	promising	techniques	in	large-scale	codes	
‣ non-intrusive	model	reduc2on	for	rapid	extensibility	[Carlberg,	Peng,	Brunton,	2018]

2. Extend	model-reduc5on	innova5ons	to	other	applica5ons	
‣ stochas2c	LSPG	[Lee,	Carlberg,	Elman,	2018]	
‣ data-driven	itera2ve	linear	solvers	[Carlberg,	Forstall,	Tuminaro,	2016]

3. Reduce	training	requirements	
‣ domain	decomposi2on	LSPG	[Carlberg,	Hoang	2018;	Hoang,	Carlberg,	2018]	

+ training	simula2ons	for	subsystems	only	
+ Primal–Schur	solver:	excellent	weak	scalability

4. Extreme-scale	uncertainty	quan5fica5on	
‣ domain	decomposi2on	UQ	[Carlberg,	Khalil,	Guzzey,	Sargsyan,	2018]	

+ uncertainty	propaga2on	for	subsystems	only	
+ Mul2plica2ve	Schwarz:	excellent	weak	scalability

/38

Kevin	CarlbergBreaking	computa5onal	barriers

Moving forward

459

1. Maximize	impact	of	current	methods	
‣ implement	new	techniques	in	large-scale	codes	and	packages	

‣ non-intrusive	methods	for	nonlinear	model	reducDon	[Carlberg,	Bai,	Brunton,	2017]

2. Extend	model-reduc5on	innova5ons	to	other	applica5ons	
‣ stochasDc	LSPG	[Lee,	Carlberg,	Elman,	2016]	

‣ Gappy	PCA	inner	products	for	extreme-scale	linear	solvers

3. Reduce	training	requirements	
‣ domain-decomposiDon	LSPG	[Carlberg,	Hoang,	2017]	

+ training	simulaDons	for	subsystems	only	
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4. Extreme-scale	uncertainty	quan5fica5on	

‣ domain-decomposiDon	UQ	[Carlberg,	Khalil,	Guzzeu,	Sargsyan,	2017]	
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Make	extreme-scale	simula=ons	pervasive	for	many-query	problems
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�3
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⌦

Figure 1: Example in two spatial dimensions. Here, each colored point is associated with a residual for the
associated subdomain, n⌦ = 4 subdomains, np = 5 ports, and P (1) = {1, 2}, P (2) = {2, 3}, P (3) = {3, 4},
P (4) = {4, 1}, P (5) = {1, 2, 3, 4}.
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4. Extreme-scale	uncertainty	quan5fica5on	

‣ domain-decomposiDon	UQ	[Carlberg,	Khalil,	Guzzeu,	Sargsyan,	2017]	

+ uncertainty	propagaDon	for	subsystems	only	

+ MulDplicaDve	Schwarz:	excellent	weak	scalability

Make	extreme-scale	simula=ons	pervasive	for	many-query	problems
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Figure 1: Example in two spatial dimensions. Here, each colored point is associated with a residual for the
associated subdomain, n⌦ = 4 subdomains, np = 5 ports, and P (1) = {1, 2}, P (2) = {2, 3}, P (3) = {3, 4},
P (4) = {4, 1}, P (5) = {1, 2, 3, 4}.
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Questions?

X ijk =
Ingredient 3: Error indicators

1 Adaptive algorithm

2 Refinement

finite element h-refinement ROM h-refinement

3 Error indicators: a) dual solve (coarse), b) prolongation (fine)

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement

Nonlinear model reduction Kevin Carlberg 54

µ reduced-order	model

⇢n, n = 1, ... ,N

regression	model

qnROM, n = 1, ... ,N

�̂n ⇡ qnHFM � qnROM, n = 1, ... ,N

wall	Dme

error
error	

tolerance

Example 2: ML and GP, stationary problem [Freno and C, 2017]

x

y

z

Figure 24: PCAP: Mesh with boundary conditions and nodes of interest: red denotes pressure (Neumann boundary
condition), blue denotes blue denotes planar constraint (Dirichlet boundary condition), orange denotes nodes of
interest
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Figure 25: PCAP: Largest simulated deformation (right) compared to undeformed state (left)
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Predictive Capability Assessment Project (PCAP)

Mechanical response

2.8 ⇥ 105 degrees of freedom

Inputs: µ 2 [50 GPa, 100 GPa] ⇥ [0.2, 0.35] define tube
elastic modulus and Poisson ratio

QoI: displacement of node of interest (orange)

ROM: POD–Galerkin with |DROM| = 8

ROMES: 150 data points (|DROMES| = 30 and five ROM
basis dimensions)

Reducing nonlinear dynamical systems Kevin Carlberg 34
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Sandia	Na(onal	Laboratories	is	a	mul(mission	laboratory	managed	and	operated	by	Na(onal	Technology	
and	Engineering	Solu(ons	of	Sandia,	LLC.,	a	wholly	owned	subsidiary	of	Honeywell	Interna(onal,	Inc.,	for	
the	U.S.	Department	of	Energy's	Na(onal	Nuclear	Security	Administra(on	under	contract	DE-NA0003525

Questions?


